Table 1. Fractional atomic coordinates and equivalent References isotropic thermal parameters $(Å^2)$

$B_{\rm eq}=\frac{4}{3}\sum_i\sum_jB_{ij}\mathbf{a}_i.\mathbf{a}_j.$							
•	x	. y	Ζ	Beq			
C(1)	0.4238 (2)	0.6198 (2)	0.5529 (1)	2.07 (3)			
C(2)	0.3881 (2)	0.5536 (2)	0.4125 (1)	2.16 (3)			
C(3)	0.7682 (2)	0.5342 (2)	0.6152 (1)	2.12 (3)			
C(4)	0.9244 (2)	0.5696 (2)	0.5436(1)	2.16 (3)			
C(5)	0.6550 (2)	0.7705 (2)	0.7278 (1)	2.11 (3)			
C(6)	0.8578 (2)	0.8351 (2)	0.7839(1)	2.19 (3)			
C(7)	0.7899 (2)	1.1065 (2)	0.6719 (1)	2.42 (3)			
C(8)	0.6319 (2)	1.0863 (2)	0.5416(1)	2.01 (3)			
C(9)	1.1259 (2)	1.0139 (2)	0.7811 (1)	2.30 (3)			
C(10)	1.2228 (2)	1.1247 (2)	0.7048 (1)	2.56 (4)			
N(1)	0.6303	0.6739(1)	0.6021	1.69 (2)			
N(2)	.0.9241 (2)	0.9645 (1)	0.7037 (1)	1.74 (2)			
O(1)	0.2195 (2)	0.4875 (1)	0.3639(1)	2.94 (3)			
O(2)	0.5092 (2)	0.5691 (1)	0.3505 (1)	2.75 (3)			
0(3)	0.9990 (2)	0.4442 (1)	0.5079(1)	2.99 (3)			
O(4)	0.9671 (2)	0.7109(1)	0.5267 (1)	2.87 (3)			
0(5)	0.5150 (2)	1.2012 (1)	0.5138(1)	2.76 (3)			
O(6)	0.6342 (2)	0.9622 (1)	0.4743 (1)	2.66 (2)			
O(7)	1.2129 (2)	1.0526 (2)	0.5808 (1)	3.77 (3)			

Table 2. Geometric parameters (Å, °)

1.288 (2)	C(8)—O(5)	1.239 (2)
1.205 (2)	C(8)—O(6)	1.239 (2)
1.257 (2)	C(10)—O(7)	1.399 (2)
1.224 (2)		
115.6 (1)	O(3)C(4)O(4)	126.7 (1)
120.8 (2)	C(7)C(8)O(5)	114.6(1)
123.5 (1)	C(7)C(8)O(6)	118.3 (1)
113.8 (1)	O(5)—C(8)—O(6)	127.1 (1)
119.5 (1)		
68.1 (2)	O(6)-C(8)-C(7)-N(2)	-2.7 (2)
-9.6 (2)	N(2)-C(9)-C(10)-O(7) - 52.1(2)
25.1 (2)		
	1.288 (2) 1.205 (2) 1.257 (2) 1.224 (2) 115.6 (1) 120.8 (2) 123.5 (1) 113.8 (1) 119.5 (1) 68.1 (2) -9.6 (2) 25.1 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Table 3. Hydrogen-bond geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	H···A	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N(1) - H \cdot \cdot \cdot O(6)$	0.90 (2)	1.94 (3)	2.717(1)	144 (1)
$N(2) - H \cdot \cdot \cdot O(4)$	0.85 (2)	2.08 (3)	2.843 (2)	152 (2)
$O(1) - H \cdots O(3^{i})$	1.21 (2)	1.25 (2)	2.449(1)	169 (2)
O(7)—H· · ·O(5 ⁱⁱ)	0.90 (2)	1.84 (3)	2.705 (2)	159 (2)

Symmetry code: (i) x - 1, y, z; (ii) x + 1, y, z.

Both positional and thermal parameters were refined for the polar H atoms but for the non-polar H atoms (bonded to C atoms), only the positional parameters were refined; isotropic B values were fixed at 0.5 Å² higher than the values of B_{eq} of the associated C atoms. The structure was solved by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). All remaining calculations were performed using NRC Crystallographic Programs for the IBM360 System (1973). The refinement used a block-diagonal approximation. The weighting scheme (one of those available in the NRC program system) was chosen in order to make $w(\Delta F)^2$ approximately independent of $|F_o|$ and $\sin\theta/\lambda$. The origin was fixed by the x and z coordinates of the atom N(1).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete bond distances have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55922 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1016]

. . .

Cotrait, M. (1972), Acta Cryst. B28, 781-785,

Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.

Görbitz, C. H. (1989). Acta Cryst. B45, 390-395.

- Ladd, M. F. C. & Povey, D. C. (1974). J. Cryst. Mol. Struct. 3, 15 - 25
- Ladd, M. F. C., Povey, D. C. & Stace, B. C. (1974). J. Cryst. Mol. Struct. 4, 313-325.
- Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Novak, A. (1974). Struct. Bonding (Berlin), 18, 177-216.
- NRC Crystallograhic Programs for the IBM360 System (1973). Accession Nos. 133-147. J. Appl. Cryst. 6, 309-346.

Acta Cryst. (1993). C49, 1184-1187

Structure of the Bis(7,7,8,8-tetracyano-pquinodimethane)-4-(Benzylmethylaminomethyl)-2,2',5,5'-tetrathiafulvalene Charge-Transfer Complex

SMAÏL TRIKI, LAHCÈNE OUAHAB* AND DANIEL GRANDJEAN

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA 1495 CNRS, Université de Rennes I, 35042 Rennes CEDEX, France

JAVIER GARIN AND SANTAGO URIEL

Department of Organic Chemistry, ICMA, University of Zaragoza-CSIC 50009 Zaragoza, Spain

JEAN MARC FABRE

Laboratoire de Chimie Organique Structurale, USTL, Place E. Bataillon, 34095 Montpellier CEDEX, France

(Received 24 September 1992; accepted 22 December 1992)

Abstract

The tetrathiafulvalenium (TTF) derivative [4-(benzylmethylaminomethyl)-2-(1,3-dithiol-2-ylidene)-1,3-dithiole cation] sublattice is built from one independent molecule which forms dimerized chains along the [100] direction. Short intra-dimer S.-.S contacts [3.532 (2) and 3.409 (2) Å] are observed. The anionic tetracyano-p-quinodimethane [TCNO: 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bispropanedinitrile] sublattice is formed by three different molecules (A, B and C) which stack along the [001] direction perpendicular to the TTF chains.

© 1993 International Union of Crystallography

Fig. 1. Stereoscopic view of the crystal structure.

Fig. 2. View of (a) the cationic and (b) the anionic chains showing atomic numbering and the different overlaps. The shortest intermolecular contacts are also shown: $d1(S1\cdots S4) = 3.532$ (2), $d2(S2\cdots S3) = 3.409$ (2), $d3(S2\cdots S4) = 3.930$ (1), $d4(S2\cdots S2) = 3.680$ (1) Å.

Comment

The crystal structure represented in the stereoscopic view (Fig. 1) is built from three TCNO molecules (A. B and C) and one molecule of the aminomethyl-TTF derivative (Fabre, Garin & Uriel, 1991, 1992) (Fig. 2). The TTF derivative stacks along the *a* axis and forms dimerized chains, with short intra-dimer S.-.S contacts [d1 = 3.532 (2) and d2 = 3.409 (2) Å]. The inter-dimer distances are larger than 3.65 Å (Fig. 2a). The anionic sublattice is built from three TCNO molecules which form chains along the c axis. The TCNO stacks are not regular. They can be described as formed by centrosymmetric trimers (B/C/B) separated by isolated molecules (A) (Fig. 2b). The intratrimer overlaps are of the bond-over-ring type (C/B), whereas the overlap between a trimer and an isolated TCNQ is crisscrossed and shifted (A/B).

The inter-planar contacts between the *B* and the *C* molecules are 3.236 Å. They are shorter than those observed between the *A* and *B* molecules (3.396 Å) (Fig. 2b). Short N···S anion-cation interactions are observed $[N2\cdots S2 = 3.079 (3), N1\cdots S3 = 3.228 (4) Å$.

Experimental

Crystal data

· · · · · · · · · · · · · · · · · · ·	
$C_{15}H_{15}NS_{4.2}(C_{12}H_{4}N_{4})$	Mo $K\alpha$ radiation
$M_r = 745.93$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 25
PĪ	reflections
a = 7.681 (1) Å	$\theta = 7.5 - 12^{\circ}$
b = 14.758(2) Å	$\mu = 0.294 \text{ mm}^{-1}$
c = 16.377 (4) Å	T = 293 K
$\alpha = 79.46(2)^{\circ}$	Needle
$\beta = 87.60 (5)^{\circ}$	$0.5 \times 0.2 \times 0.1 \text{ mm}$
$\gamma = 79.92$ (4)°	Black
V = 1796.8Å ³	Crystal source: redox chem-
Z = 2	ical reaction (slow evapo-
$D_x = 1.379 \text{ Mg m}^{-3}$	ration)

3505 observed reflections

 $[I \ge 3\sigma]$

 $R_{\rm int} = 0.018$ $\theta_{\rm max} = 25^{\circ}$

 $h = 0 \rightarrow 9$

 $k = -17 \rightarrow 17$

 $l = -19 \rightarrow 19$

3 standard reflections frequency: 60 min

 $\Delta \rho_{\rm max} = 0.238 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction:

Extinction coefficient:

 $g = 1.445 \times 10^{-7}$

 $|F_c|(1+gI_c)^{-1}$

 $\Delta \rho_{\rm min} = -0.087 \ {\rm e} \ {\rm \AA}^{-3}$

intensity variation: <1%

Data collection Enraf-Nonius CAD-4 diffractometer θ -2 θ scans Absorption correction: empirical (DIFABS; Walker & Stuart, 1983) $T_{min} = 0.713, T_{max} =$ 1.329 6705 measured reflections 5665 independent reflections

Refinement

Refinement on F Final R = 0.039wR = 0.049S = 1.1063505 reflections 562 parameters

All H-at	om paramete	ers re-	Atomic s	scattering fa	actors	C3C7	1.498 (5)	C23-C27	1.426 (5)
6	om purumon		f nonine t			C5—C6	1.318 (5)	N5C32	1.147 (4)
nnea			from I	nternationa	u ladies	C7N9	1 458 (4)	N6-C33	1 148 (4)
$w = 4F_0^2$	$\frac{2}{\sigma(I)^2} + (0.0)$	$(7F_{a}^{2})^{2}$]	for X-	rav Crvstal	lography	C8_N9	1 471 (5)	C78_C79	1.140 (4)
$(\Lambda / -)$	- 0.16		(1074	Val IVA			1.4/1 (3)	C28-C29	1.430 (4)
$(\Delta/0)_{mi}$	ax = 0.10		(19/4,	vol. 1v)		C9C10	1.500 (5)	C28-C30	1.437 (4)
						C9—N9	1.400 (5)	C28–C31	1.385 (4)
Table 1	Fraction	al atomic	coording	ites and e	auivalent	C10-C11	1.384 (4)	C29—C30	1.343 (4)
	•			12	1	C10-C15	1.381 (5)	C31–C32	1.433 (4)
	isotropi	c thermal	l paramet	ers (A ⁺)		C11-C12	1.367 (6)	C31-C33	1.427 (4)
			_ ``			C12—C13	1.375 (7)	N7-C38	1.138 (5)
		$B_{eq} = \frac{4}{2} \sum_{i}$	$\Sigma_i \beta_{ii} \mathbf{a}_i \mathbf{a}_i$	5. S.		C13-C14	1.365 (5)	N8-C39	1 135 (5)
					_	C14-C15	1 400 (6)	C34C35	1 445 (5)
	x	У		z	Beq	NI C24	1 150 (5)	C24 C26	1 442 (5)
S1	0.3565 (1)	0.4613	3 (5) 0).16443 (5)	3.12 (12)	N1-C24	1.130 (3)	C34_C30	1.445 (3)
S2	0.1709 (1)	0.5748	3 (5) -0	0.01252 (5)	3.06 (2)	N2-C25	1.149 (4)	$C_{34} - C_{37}$	1.374 (4)
S3	0.4935 (1)	0.3059	2 (5) 0	.08041 (5)	3.62 (2)	N3	1.149 (5)	C35-C36	1.340 (4)
S4	0.3056 (1)	0.4108	0 (6) -0	0.08671 (5)	3.82 (2)	N4C27	1.147 (5)	C37-C38	1.430 (5)
CI	0 3720 (4)	0 4157	(2)	0743 (2)	2 83 (7)	C16—C17	1.432 (4)	C37—C39	1.429 (5)
ĉ	0.2000 (4)	0.4630	(2) - 0	0006(2)	2.00(7)	C1 - S1 - C3	947(1)	C11-C10-C15	1189(3)
C2	0.2500 (4)	0.4050	(2) = 0	2210 (2)	2.73(7)	C2-52-C5	94 2 (2)	C10-C11-C12	1207(4)
CS	0.46/8 (4)	0.3047		.2219(2)	3.03(7)	$C_2 = S_2 = C_3$	94.2 (2) 05.5 (2)		120.7 (4)
C4	0.5461 (4)	0.292/	(2)	.1831 (2)	3.35 (7)	$C_{1} = 33 = C_{4}$	95.5 (2)		120.5 (5)
CS	0.1171 (5)	0.5780	(2) - 0	0.1145 (2)	3.77 (8)	C254C0	94.7(1)	C12-C13-C14	120.3 (4)
C6	0.1766 (5)	0.5034	-0).1478 (2)	3.90 (8)	SICIS3	115.7(1)	C13-C14-C15	119.6 (4)
C7	0.5303 (4)	0.3721	(2) 0).3086 (2)	3.53 (7)	S1C1C2	123.8 (2)	C10-C15-C14	120.2 (3)
C8	0.2467 (5)	0.3840)(3) 0).3794 (3)	5.8 (1)	S3-C1-C2	120.5 (2)	C7—N9—C8	111.4 (3)
C9	0.4582 (5)	0.4795	5(2) 0	.4043 (2)	3.96 (8)	S2—C2—S4	115.9 (1)	C7—N9—C9	110.9 (2)
C10	0.5690 (5)	0.5494	(2) 0	.3631 (2)	3.49 (7)	S2-C2-C1	123.3 (2)	C8—N9—C9	111.0 (3)
C11	0.4895 (6)	0.6288	ເສັ້ 0	3103 (2)	52(1)	S4-C2-C1	120.8 (3)	C17-C16-C21	117.2 (3)
C12	0 5868 (7)	0 6936	(3) 0	2713 (3)	67(1)	S1-C3-C4	116.7 (3)	C17C16C22	121.0 (3)
C12	0.7662 (6)	0.000	(3) 0	2026 (2)	6.5 (1)	\$1-C3-C7	1167(2)	C21_C16_C22	121.8 (3)
C14	0.7002 (0)	0.0003		2259 (2)	(0.5(1))	$C_{4}-C_{3}-C_{7}$	126.6 (2)	C16-C17-C18	121.0 (3)
C14	0.8481 (0)	0.0031	(3) 0	.3338 (3)	0.4 (1)	S3 C4 C3	117.2 (2)		121.7 (3)
CIS	0.7488 (5)	0.5367	(3) 0	0.3760 (2)	4.63 (9)	33C4C3	117.5 (2)	C17 - C18 - C19	121.2 (2)
N9	0.3889 (3)	0.4341	. (2) 0).3431 (2)	3.51 (6)	\$2-05-06	117.8 (3)	C18-C19-C20	117.0(3)
N1	0.5600 (4)	0.0819	(2) 0).1409 (2)	4.81 (8)	\$4-06-05	117.4 (3)	C18C19C23	120.9 (3)
N2	0.0261 (5)	0.2251	. (2) 0).0732 (2)	5.59 (8)	C3-C/-N9	110.7 (2)	C20-C19-C23	122.1 (3)
N3	0.1284 (5)	-0.3115	(3) 0	.4925 (3)	7.0 (1)	C10-C9-N9	111.1 (3)	C19-C20-C21	121.5 (3)
N4	-0.4022 (4)	-0.1542	(3) 0	.4303 (2)	6.14 (9)	C16C22C24	122.1 (2)	C16-C21-C20	121.4 (2)
C16	0.1530 (4)	0.0202	(2) 0	.2205 (2)	2.96 (7)	C16—C22—C25	122.2 (2)	C28C31C32	122.9 (3)
C17	-0.0342(4)	0.0258	$\dot{\alpha}$	2319 (2)	3.56 (7)	C24—C22—C25	115.7 (2)	C28-C31-C33	121.6 (3)
C18	-0 1040 (4)	-0.0359	(2)	2893 (2)	3 56 (7)	C19-C23-C26	121.4 (3)	C32-C31-C33	115.5 (3)
C10	0.0066 (4)	_0.0000		3409 (2)	3 20 (7)	C19-C23-C27	122.2 (2)	N5-C32-C31	177.9 (3)
C19	0.0000(4)	0 1100	(2) 0	2077 (2)	3.23(7)	C26-C23-C27	1164(3)	N6-C33-C31	1784 (3)
C20	0.1943 (4)	-0.1160	(2) 0	0.3277 (2)	3.24 (7)	N1-C24-C22	179 4 (4)	C35_C34_C36	118 4 (3)
C21	0.2034 (4)	-0.0331		1.2709 (2)	3.26 (7)	N2_C25_C22	179 3 (4)	C35 - C34 - C37	121 3 (3)
C22	0.2240 (4)	0.08/3		.1622 (2)	3.27(7)	$N_{2} = C_{2} = C_{2}$	179.5 (4)	$C_{36} C_{24} C_{27}$	121.3 (3)
C23	-0.0668 (4)	-0.1728	s (2) 0	0.4027 (2)	3.60 (8)	NJ-C20-C23	179.4 (3)	$C_{30} - C_{34} - C_{37}$	120.5 (3)
C24	0.4103 (5)	0.0838	3(2) 0	0.1504 (2)	3.56 (8)	N4-C2/-C23	1/6.5 (4)	C34-C35-C36	120.5 (3)
C25	0.1155 (5)	0.1638	3 (2) 0	0.1130 (2)	3.73 (8)	C29-C28-C30	117.5 (2)	C34—C36—C35	121.1 (3)
C26	0.0414 (5)	-0.2493	3 (2) 0	.4526 (2)	4.44 (9)	C29—C28—C31	121.0 (3)	C34—C37—C38	122.4 (3)
C27	-0.2525 (5)	-0.1638	(2) 0	.4181 (2)	4.15 (8)	C30-C28-C31	121.4 (3)	C34—C37—C39	122.3 (3)
N5	0.4821 (4)	0.1172	(2) 0	.3507 (2)	4.91 (8)	C28—C29—C30	121.0 (2)	C38—C37—C39	115.2 (3)
N6	-0.0456 (4)	0.2603	(2) 0	.2828 (2)	4.82 (8)	C28—C30—C29	121.4 (2)	N7-C38-C37	178.5 (4)
C28	0.0750 (4)	0.0630		4382 (2)	2 53 (6)	C9-C10-C11	119.2 (3)	N8-C39-C37	178.5 (4)
(79	0 1147 (4)	-0.0725		5488 (2)	2 82 (6)	C9-C10-C15	121.9 (2)		
C30	0.1847(4)	-0.0129		4899 (2)	2.02 (0)				
C31	0.1071(4)	0.012/	(2) 0	3771 (2)	2.75 (0)	The structure was	solved by dir	ect methods and si	iccessive dif-
C32	0 3337 (4)	0.1241	(2) 0	2624 (2)	2.00(7)	ference Fourier sy	ntheses. All th	he H atoms were ch	ecked by dif-
C32	0.3337 (4)	0.1100	(2) 0	2254 (2)	3.24 (7)	ference Fourier sy	ntheces Full	matrix least course	o onicotronia
C33	0.0364 (4)	0.1994	(2) 0	.3234 (2)	3.18(7)	ference Fourier sy	nuicses. I un-	mau in icasi-square	anisou opic
IN /	0.5/18 (4)	-0.1000	(3) 0	.0737 (2)	0.24 (9)	(β_{ij}) refinement w	as performed	1 on F, except for	the H atoms
N8	0.1362 (5)	-0.3030	(3) 0	.1574 (3)	7.3 (1)	which were refine	ed isotropica	lly. All calculation	ns were per-
C34	0.1183 (5)	-0.0778	(2) 0	.0402 (2)	3.60 (7)	formed on a Micro	VA Y 3100 cc	mouter using the S	DPnrograms
C35	0.0704 (5)	0.0759	(2) -0	.0467 (2)	3.83 (8)	Tormed on a Milero	WAA 5100 CC	mpater using the 5	DF programs
C36	0.1824 (4)	0.0021	(2) -0	.0080 (2)	3.91 (8)	(B. A. Frenz & As	sociates, Inc.	, 1985).	
C37	0.2353 (5)	-0.1537	(2) 0	.0781 (2)	4.03 (8)				
C38	0.4224 (5)	-0.1561	(3) 0	.0750 (2)	4.39 (9)	·			
C39	0.1787 (5)	-0.2363	(3) 0	.1228 (3)	5.0 (Ì)	Lists of structure fa	ctors, anisotrop	oic thermal paramete	rs, H-atom co-
		- 10 A.		.,		ordinates and bond (listances and a	ngles involving H at	oms have been
		~ .				denocited with the B	ritich Library I	Document Supply Co	ntra ao Sunnia
	Table 2. (jeometric	: paramet	ers (A, °)	. •	montor Dut 1:	No SID 5502	5 (26 mm) Control	an La -La -
S1C1		1 723 (2)	C16. C21		1 424 (4)	memory rubication	110. SUP 3393	5 (20 pp.). Copies m	ay be obtained
		1.729 (3)			1.424 (4)	through The Technic	al Editor, Interi	national Union of Cry	stallography, 5
31-03		1./38 (3)	C10-C22		1.410(4)	Abbey Square, Ches	ter CH1 2HU.	England. [CIF refere	nce: PA 1030]
S2-C2		1./22 (3)	C17C18		1.348 (4)		-,-		
S2-C5	· · · ·	1.728 (3)	C18-C19		1.431 (4)				
S3-C1		1.711 (3)	C19-C20		1.437 (4)				
S3—C4		1.715 (3)	C19—C23		1.404 (4)	Keferences		4	
S4—C2		1.718 (3)	C20-C21		1.351 (4)			000) GDD G	D
S4—C6		1.721 (3)	C22-C24		1.429 (5)	D. A. Frenz & Ass	ociates, Inc. (1	1985). SDP Structur	e Determina-
C1-C2		1.408 (4)	C22-C25	•	1.419 (4)	tion Package. Co	llege Station,	Texas, USA, and E	nraf–Nonius,
C3C4		1.339 (5)	C23-C26		1.422 (4)	Delft, The Nethe	rlands.		·

- Fabre, J. M., Garin, J. & Uriel, S. (1991). Tetrahedron Lett. 32, 6407-6410.
- Fabre, J. M., Garin, J. & Uriel, S. (1992). *Tetrahedron*, 48, 3983-3990.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1187-1189

Structures of 3,4-Dimethyl-2,2',5,5'-tetrathiafulvalene Perrhenate, (DMTTF)ReO₄, and 3',4'-Dimethyl-3,4-tetramethylene-2,5dithia-2',5'-diselenafulvalene Hexafluorophosphate, (CHDTDMDSF)PF₆

Allal Mhanni, Lahcène Ouahab* and Daniel Grandjean

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA 1495 CNRS, Université de Rennes I, 35042 Rennes CEDEX, France

JOSIANE AMOUROUX AND JEAN MARC FABRE

Laboratoire de Chimie Organique Structurale, USTL, Place E. Bataillon, 34060 Montpellier CEDEX, France

(Received 5 October 1992; accepted 17 December 1992)

Abstract

The two compounds (DMTTF)ReO₄ (1) [DMTTF = 2-(1,3-dithiol-2-ylidene)-4,5-dimethyl-1,3-dithiole cation] and (CHDTDMDSF)PF₆ (2) [CHDTDMDSF = 2-(4,5-dimethyl-1,3-diselenol-2-ylidene)-4,5,6,7-

tetrahydro-1,3-benzodithiole cation] contain unsymmetrically substituted tetrathiafulvalene (TTF) derivatives. They present similar crystal structures which are characterized by alternating organic dimers and inorganic pairs of anions. The values of the central C—C bond lengths are 1.39 (1) and 1.40 (1) Å for (1) and (2), respectively. Strong intradimer contacts are observed: $S1\cdots S2 = 3.379$ (2) Å for (1) and $Se1\cdots S2 = 3.460$ (3) and $Se2\cdots S1 =$ 3.435 (3) Å for (2).

Comment

The single crystals of $(DMTTF)ReO_4$ (1) and $(CHDTDMDSF)PF_6$ (2) were obtained by electrooxidation, on a platinum electrode, of DMTTF or CHTMDTDSF (10^{-3} M) in a tetrahydrofuran solution containing $(Bu_4N)ReO_4$ or $(Bu_4N)PF_6$ (0.1 M) as supporting electrolytes.

0108-2701/93/061187-03\$06.00

Fig. 1. (a) Crystal structure projection of (1) in the (100) plane, showing the alternate packing of the organic dimers and the pairs of inorganic anions, with $d1(S1^{i...}S2^{iii}) = 3.379$ (2), $d2(S1^{i...}O2^{v}) = 3.683$ (9), $d3(S2^{i...}O3^{vi}) = 3.495$ (9), $(S2^{i...}O1^{vii})$ = 2.973 (6) Å [symmetry code: (i) 1 + x, y, z; (ii) 1 - x, y, z; (iii) 1 - x, -y, 1 - z; (iv) 1 + x, -y, 1 - z; (v) 1 + x, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (vi) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (vii) $\frac{3}{2} + x$, y, $\frac{1}{2} - z$]. (b) Atomic numbering scheme and intra-dimer overlap.

Fig. 2. (a) Crystal structure projection of (2) in the (101) plane, showing the alternate packing of the organic dimers and the pairs of inorganic anions, with dl = 3.460 (3), d2 = 3.435 (3), d3 = 3.164 (8) and d4 = 3.300 (11) Å. (b) Atomic numbering scheme and intra-dimer overlap.

© 1993 International Union of Crystallography